MakeItFrom.com
Menu (ESC)

C69300 Brass vs. EN 1.4986 Stainless Steel

C69300 brass belongs to the copper alloys classification, while EN 1.4986 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C69300 brass and the bottom bar is EN 1.4986 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.5 to 15
18
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 330 to 370
460
Tensile Strength: Ultimate (UTS), MPa 550 to 630
750
Tensile Strength: Yield (Proof), MPa 300 to 390
560

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 160
940
Melting Completion (Liquidus), °C 880
1450
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 38
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
25
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.8
Embodied Energy, MJ/kg 45
67
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 70
120
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 700
790
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 21
26
Strength to Weight: Bending, points 18 to 20
23
Thermal Diffusivity, mm2/s 12
4.0
Thermal Shock Resistance, points 19 to 22
16

Alloy Composition

Boron (B), % 0
0.050 to 0.1
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 73 to 77
0
Iron (Fe), % 0 to 0.1
59.4 to 66.6
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
1.6 to 2.0
Nickel (Ni), % 0 to 0.1
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0.040 to 0.15
0 to 0.045
Silicon (Si), % 2.7 to 3.4
0.3 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 18.4 to 24.3
0
Residuals, % 0 to 0.5
0