MakeItFrom.com
Menu (ESC)

C69300 Brass vs. N08700 Stainless Steel

C69300 brass belongs to the copper alloys classification, while N08700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69300 brass and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.5 to 15
32
Poisson's Ratio 0.32
0.28
Rockwell B Hardness 84 to 88
81
Shear Modulus, GPa 41
79
Shear Strength, MPa 330 to 370
410
Tensile Strength: Ultimate (UTS), MPa 550 to 630
620
Tensile Strength: Yield (Proof), MPa 300 to 390
270

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 880
1450
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 38
13
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
32
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.0
Embodied Energy, MJ/kg 45
82
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 70
160
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 700
180
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 21
21
Strength to Weight: Bending, points 18 to 20
20
Thermal Diffusivity, mm2/s 12
3.5
Thermal Shock Resistance, points 19 to 22
14

Alloy Composition

Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 73 to 77
0 to 0.5
Iron (Fe), % 0 to 0.1
42 to 52.7
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
4.3 to 5.0
Nickel (Ni), % 0 to 0.1
24 to 26
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0.040 to 0.15
0 to 0.040
Silicon (Si), % 2.7 to 3.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 18.4 to 24.3
0
Residuals, % 0 to 0.5
0