MakeItFrom.com
Menu (ESC)

C69300 Brass vs. S43940 Stainless Steel

C69300 brass belongs to the copper alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69300 brass and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.5 to 15
21
Poisson's Ratio 0.32
0.28
Rockwell B Hardness 84 to 88
76
Shear Modulus, GPa 41
77
Shear Strength, MPa 330 to 370
310
Tensile Strength: Ultimate (UTS), MPa 550 to 630
490
Tensile Strength: Yield (Proof), MPa 300 to 390
280

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
890
Melting Completion (Liquidus), °C 880
1440
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 38
25
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 45
38
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 70
86
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 700
200
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 21
18
Strength to Weight: Bending, points 18 to 20
18
Thermal Diffusivity, mm2/s 12
6.8
Thermal Shock Resistance, points 19 to 22
18

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 73 to 77
0
Iron (Fe), % 0 to 0.1
78.2 to 82.1
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.1
0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0.040 to 0.15
0 to 0.040
Silicon (Si), % 2.7 to 3.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0.1 to 0.6
Zinc (Zn), % 18.4 to 24.3
0
Residuals, % 0 to 0.5
0