MakeItFrom.com
Menu (ESC)

C69400 Brass vs. 3103 Aluminum

C69400 brass belongs to the copper alloys classification, while 3103 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C69400 brass and the bottom bar is 3103 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 17
1.1 to 28
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Shear Strength, MPa 350
68 to 130
Tensile Strength: Ultimate (UTS), MPa 570
100 to 220
Tensile Strength: Yield (Proof), MPa 270
39 to 200

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 920
660
Melting Onset (Solidus), °C 820
640
Specific Heat Capacity, J/kg-K 410
900
Thermal Conductivity, W/m-K 26
160
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
42
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
140

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 300
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 340
11 to 280
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 19
10 to 22
Strength to Weight: Bending, points 18
18 to 30
Thermal Diffusivity, mm2/s 7.7
64
Thermal Shock Resistance, points 20
4.6 to 9.9

Alloy Composition

Aluminum (Al), % 0
96.3 to 99.1
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 80 to 83
0 to 0.1
Iron (Fe), % 0 to 0.2
0 to 0.7
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0
0 to 0.3
Manganese (Mn), % 0
0.9 to 1.5
Silicon (Si), % 3.5 to 4.5
0 to 0.5
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 11.5 to 16.5
0 to 0.2
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.15