MakeItFrom.com
Menu (ESC)

C69400 Brass vs. AISI 310HCb Stainless Steel

C69400 brass belongs to the copper alloys classification, while AISI 310HCb stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69400 brass and the bottom bar is AISI 310HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 350
410
Tensile Strength: Ultimate (UTS), MPa 570
590
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 920
1410
Melting Onset (Solidus), °C 820
1370
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 27
28
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.8
Embodied Energy, MJ/kg 44
69
Embodied Water, L/kg 300
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
210
Resilience: Unit (Modulus of Resilience), kJ/m3 340
130
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 7.7
3.9
Thermal Shock Resistance, points 20
13

Alloy Composition

Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 80 to 83
0
Iron (Fe), % 0 to 0.2
48 to 57
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
19 to 22
Niobium (Nb), % 0
0 to 1.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 3.5 to 4.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 11.5 to 16.5
0
Residuals, % 0 to 0.5
0