MakeItFrom.com
Menu (ESC)

C69400 Brass vs. AISI 317 Stainless Steel

C69400 brass belongs to the copper alloys classification, while AISI 317 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69400 brass and the bottom bar is AISI 317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
35 to 55
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
79
Shear Strength, MPa 350
420 to 470
Tensile Strength: Ultimate (UTS), MPa 570
580 to 710
Tensile Strength: Yield (Proof), MPa 270
250 to 420

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 170
590
Melting Completion (Liquidus), °C 920
1400
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 27
21
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.3
Embodied Energy, MJ/kg 44
59
Embodied Water, L/kg 300
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
210 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 340
150 to 430
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
20 to 25
Strength to Weight: Bending, points 18
20 to 22
Thermal Diffusivity, mm2/s 7.7
4.1
Thermal Shock Resistance, points 20
12 to 15

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 80 to 83
0
Iron (Fe), % 0 to 0.2
58 to 68
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
11 to 15
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 3.5 to 4.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 11.5 to 16.5
0
Residuals, % 0 to 0.5
0