MakeItFrom.com
Menu (ESC)

C69400 Brass vs. ASTM A372 Grade H Steel

C69400 brass belongs to the copper alloys classification, while ASTM A372 grade H steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C69400 brass and the bottom bar is ASTM A372 grade H steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
20 to 22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 350
410 to 570
Tensile Strength: Ultimate (UTS), MPa 570
650 to 910
Tensile Strength: Yield (Proof), MPa 270
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 26
45
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
2.3
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 44
20
Embodied Water, L/kg 300
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 340
500 to 810
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19
23 to 32
Strength to Weight: Bending, points 18
21 to 27
Thermal Diffusivity, mm2/s 7.7
12
Thermal Shock Resistance, points 20
19 to 27

Alloy Composition

Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0
0.4 to 0.65
Copper (Cu), % 80 to 83
0
Iron (Fe), % 0 to 0.2
97.3 to 98.3
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.75 to 1.1
Molybdenum (Mo), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 3.5 to 4.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 11.5 to 16.5
0
Residuals, % 0 to 0.5
0