MakeItFrom.com
Menu (ESC)

C69400 Brass vs. AWS ERTi-1

C69400 brass belongs to the copper alloys classification, while AWS ERTi-1 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C69400 brass and the bottom bar is AWS ERTi-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
24
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
41
Tensile Strength: Ultimate (UTS), MPa 570
240
Tensile Strength: Yield (Proof), MPa 270
170

Thermal Properties

Latent Heat of Fusion, J/g 260
420
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 920
1670
Melting Onset (Solidus), °C 820
1620
Specific Heat Capacity, J/kg-K 410
540
Thermal Conductivity, W/m-K 26
21
Thermal Expansion, µm/m-K 18
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 27
37
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 2.7
31
Embodied Energy, MJ/kg 44
510
Embodied Water, L/kg 300
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
52
Resilience: Unit (Modulus of Resilience), kJ/m3 340
140
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 19
15
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 7.7
8.7
Thermal Shock Resistance, points 20
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Copper (Cu), % 80 to 83
0
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 0.2
0 to 0.080
Lead (Pb), % 0 to 0.3
0
Nitrogen (N), % 0
0 to 0.012
Oxygen (O), % 0
0.030 to 0.1
Silicon (Si), % 3.5 to 4.5
0
Titanium (Ti), % 0
99.773 to 99.97
Zinc (Zn), % 11.5 to 16.5
0
Residuals, % 0 to 0.5
0