MakeItFrom.com
Menu (ESC)

C69400 Brass vs. EN 1.0456 Steel

C69400 brass belongs to the copper alloys classification, while EN 1.0456 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C69400 brass and the bottom bar is EN 1.0456 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
24 to 26
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 350
270 to 280
Tensile Strength: Ultimate (UTS), MPa 570
420 to 450
Tensile Strength: Yield (Proof), MPa 270
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 26
48
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 27
2.2
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 44
20
Embodied Water, L/kg 300
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
93 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 340
220 to 230
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19
15 to 16
Strength to Weight: Bending, points 18
16 to 17
Thermal Diffusivity, mm2/s 7.7
13
Thermal Shock Resistance, points 20
13 to 14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 80 to 83
0 to 0.35
Iron (Fe), % 0 to 0.2
96.7 to 99.48
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.5 to 1.4
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 3.5 to 4.5
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 11.5 to 16.5
0
Residuals, % 0 to 0.5
0