MakeItFrom.com
Menu (ESC)

C69400 Brass vs. EN 1.4571 Stainless Steel

C69400 brass belongs to the copper alloys classification, while EN 1.4571 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69400 brass and the bottom bar is EN 1.4571 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
14 to 40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 350
410 to 550
Tensile Strength: Ultimate (UTS), MPa 570
600 to 900
Tensile Strength: Yield (Proof), MPa 270
230 to 570

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 170
950
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 27
19
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 44
54
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 340
130 to 820
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
21 to 32
Strength to Weight: Bending, points 18
20 to 26
Thermal Diffusivity, mm2/s 7.7
4.0
Thermal Shock Resistance, points 20
13 to 20

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 80 to 83
0
Iron (Fe), % 0 to 0.2
61.7 to 71
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
10.5 to 13.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 3.5 to 4.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.7
Zinc (Zn), % 11.5 to 16.5
0
Residuals, % 0 to 0.5
0