MakeItFrom.com
Menu (ESC)

C69400 Brass vs. EN 1.4618 Stainless Steel

C69400 brass belongs to the copper alloys classification, while EN 1.4618 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69400 brass and the bottom bar is EN 1.4618 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
51
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 350
480 to 500
Tensile Strength: Ultimate (UTS), MPa 570
680 to 700
Tensile Strength: Yield (Proof), MPa 270
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 920
1400
Melting Onset (Solidus), °C 820
1360
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 27
13
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
39
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
270 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 340
160 to 170
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
24 to 25
Strength to Weight: Bending, points 18
22 to 23
Thermal Diffusivity, mm2/s 7.7
4.0
Thermal Shock Resistance, points 20
15 to 16

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 80 to 83
1.0 to 2.5
Iron (Fe), % 0 to 0.2
62.7 to 72.5
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
5.5 to 9.5
Nickel (Ni), % 0
4.5 to 5.5
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0
0 to 0.070
Silicon (Si), % 3.5 to 4.5
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 11.5 to 16.5
0
Residuals, % 0 to 0.5
0