MakeItFrom.com
Menu (ESC)

C69400 Brass vs. C48500 Brass

Both C69400 brass and C48500 brass are copper alloys. They have 75% of their average alloy composition in common.

For each property being compared, the top bar is C69400 brass and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 17
13 to 40
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 42
39
Shear Strength, MPa 350
250 to 300
Tensile Strength: Ultimate (UTS), MPa 570
400 to 500
Tensile Strength: Yield (Proof), MPa 270
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 920
900
Melting Onset (Solidus), °C 820
890
Specific Heat Capacity, J/kg-K 410
380
Thermal Conductivity, W/m-K 26
120
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
26
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 27
23
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
46
Embodied Water, L/kg 300
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 340
120 to 500
Stiffness to Weight: Axial, points 7.4
7.1
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 19
14 to 17
Strength to Weight: Bending, points 18
15 to 17
Thermal Diffusivity, mm2/s 7.7
38
Thermal Shock Resistance, points 20
13 to 17

Alloy Composition

Copper (Cu), % 80 to 83
59 to 62
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0 to 0.3
1.3 to 2.2
Silicon (Si), % 3.5 to 4.5
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 11.5 to 16.5
34.3 to 39.2
Residuals, % 0
0 to 0.4