MakeItFrom.com
Menu (ESC)

C69400 Brass vs. S17700 Stainless Steel

C69400 brass belongs to the copper alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69400 brass and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
1.0 to 23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 350
740 to 940
Tensile Strength: Ultimate (UTS), MPa 570
1180 to 1650
Tensile Strength: Yield (Proof), MPa 270
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 27
13
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 44
40
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 340
460 to 3750
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
42 to 59
Strength to Weight: Bending, points 18
32 to 40
Thermal Diffusivity, mm2/s 7.7
4.1
Thermal Shock Resistance, points 20
39 to 54

Alloy Composition

Aluminum (Al), % 0
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 80 to 83
0
Iron (Fe), % 0 to 0.2
70.5 to 76.8
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.5 to 4.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 11.5 to 16.5
0
Residuals, % 0 to 0.5
0