MakeItFrom.com
Menu (ESC)

C69400 Brass vs. S43940 Stainless Steel

C69400 brass belongs to the copper alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69400 brass and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 350
310
Tensile Strength: Ultimate (UTS), MPa 570
490
Tensile Strength: Yield (Proof), MPa 270
280

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 26
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 27
12
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 44
38
Embodied Water, L/kg 300
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
86
Resilience: Unit (Modulus of Resilience), kJ/m3 340
200
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 7.7
6.8
Thermal Shock Resistance, points 20
18

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 80 to 83
0
Iron (Fe), % 0 to 0.2
78.2 to 82.1
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.5 to 4.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6
Zinc (Zn), % 11.5 to 16.5
0
Residuals, % 0 to 0.5
0