MakeItFrom.com
Menu (ESC)

C69430 Brass vs. N08120 Nickel

C69430 brass belongs to the copper alloys classification, while N08120 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69430 brass and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
79
Shear Strength, MPa 350
470
Tensile Strength: Ultimate (UTS), MPa 570
700
Tensile Strength: Yield (Proof), MPa 280
310

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 920
1420
Melting Onset (Solidus), °C 820
1370
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 26
11
Thermal Expansion, µm/m-K 18
14

Otherwise Unclassified Properties

Base Metal Price, % relative 27
45
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 2.7
7.2
Embodied Energy, MJ/kg 44
100
Embodied Water, L/kg 300
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
190
Resilience: Unit (Modulus of Resilience), kJ/m3 340
240
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 7.7
3.0
Thermal Shock Resistance, points 20
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Arsenic (As), % 0.030 to 0.060
0
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 80 to 83
0 to 0.5
Iron (Fe), % 0 to 0.2
21 to 41.4
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 3.5 to 4.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 11.4 to 16.5
0
Residuals, % 0 to 0.5
0