MakeItFrom.com
Menu (ESC)

C69430 Brass vs. S13800 Stainless Steel

C69430 brass belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C69430 brass and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
11 to 18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 350
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 570
980 to 1730
Tensile Strength: Yield (Proof), MPa 280
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 26
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 27
15
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 44
46
Embodied Water, L/kg 300
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 340
1090 to 5490
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
35 to 61
Strength to Weight: Bending, points 18
28 to 41
Thermal Diffusivity, mm2/s 7.7
4.3
Thermal Shock Resistance, points 20
33 to 58

Alloy Composition

Aluminum (Al), % 0
0.9 to 1.4
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 80 to 83
0
Iron (Fe), % 0 to 0.2
73.6 to 77.3
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 3.5 to 4.5
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Zinc (Zn), % 11.4 to 16.5
0
Residuals, % 0 to 0.5
0