MakeItFrom.com
Menu (ESC)

C69700 Brass vs. 2218 Aluminum

C69700 brass belongs to the copper alloys classification, while 2218 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C69700 brass and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
73
Elongation at Break, % 25
6.8 to 10
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
27
Shear Strength, MPa 300
210 to 250
Tensile Strength: Ultimate (UTS), MPa 470
330 to 430
Tensile Strength: Yield (Proof), MPa 230
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 240
390
Maximum Temperature: Mechanical, °C 160
220
Melting Completion (Liquidus), °C 930
640
Melting Onset (Solidus), °C 880
510
Specific Heat Capacity, J/kg-K 400
870
Thermal Conductivity, W/m-K 43
140
Thermal Expansion, µm/m-K 19
22

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 8.3
3.1
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 310
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
27 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 250
450 to 650
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
45
Strength to Weight: Axial, points 16
30 to 39
Strength to Weight: Bending, points 16
34 to 41
Thermal Diffusivity, mm2/s 13
52
Thermal Shock Resistance, points 16
15 to 19

Alloy Composition

Aluminum (Al), % 0
88.8 to 93.6
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 75 to 80
3.5 to 4.5
Iron (Fe), % 0 to 0.2
0 to 1.0
Lead (Pb), % 0.5 to 1.5
0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 0.4
0 to 0.2
Nickel (Ni), % 0
1.7 to 2.3
Silicon (Si), % 2.5 to 3.5
0 to 0.9
Zinc (Zn), % 13.9 to 22
0 to 0.25
Residuals, % 0
0 to 0.15