MakeItFrom.com
Menu (ESC)

C69700 Brass vs. 6014 Aluminum

C69700 brass belongs to the copper alloys classification, while 6014 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C69700 brass and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 25
9.1 to 17
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Shear Strength, MPa 300
96 to 150
Tensile Strength: Ultimate (UTS), MPa 470
160 to 260
Tensile Strength: Yield (Proof), MPa 230
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 240
400
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 930
640
Melting Onset (Solidus), °C 880
620
Specific Heat Capacity, J/kg-K 400
900
Thermal Conductivity, W/m-K 43
200
Thermal Expansion, µm/m-K 19
23

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.6
Embodied Energy, MJ/kg 44
160
Embodied Water, L/kg 310
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
22
Resilience: Unit (Modulus of Resilience), kJ/m3 250
46 to 300
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 16
16 to 26
Strength to Weight: Bending, points 16
24 to 33
Thermal Diffusivity, mm2/s 13
83
Thermal Shock Resistance, points 16
7.0 to 11

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.2
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 75 to 80
0 to 0.25
Iron (Fe), % 0 to 0.2
0 to 0.35
Lead (Pb), % 0.5 to 1.5
0
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 0.4
0.050 to 0.2
Silicon (Si), % 2.5 to 3.5
0.3 to 0.6
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 13.9 to 22
0 to 0.1
Residuals, % 0
0 to 0.15