MakeItFrom.com
Menu (ESC)

C69700 Brass vs. ACI-ASTM CA28MWV Steel

C69700 brass belongs to the copper alloys classification, while ACI-ASTM CA28MWV steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C69700 brass and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
11
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 470
1080
Tensile Strength: Yield (Proof), MPa 230
870

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 160
740
Melting Completion (Liquidus), °C 930
1470
Melting Onset (Solidus), °C 880
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 43
25
Thermal Expansion, µm/m-K 19
10

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 44
44
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1920
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
38
Strength to Weight: Bending, points 16
30
Thermal Diffusivity, mm2/s 13
6.6
Thermal Shock Resistance, points 16
40

Alloy Composition

Carbon (C), % 0
0.2 to 0.28
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
81.4 to 85.8
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 13.9 to 22
0
Residuals, % 0 to 0.5
0