MakeItFrom.com
Menu (ESC)

C69700 Brass vs. AISI 414 Stainless Steel

C69700 brass belongs to the copper alloys classification, while AISI 414 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C69700 brass and the bottom bar is AISI 414 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
17
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 300
550 to 590
Tensile Strength: Ultimate (UTS), MPa 470
900 to 960
Tensile Strength: Yield (Proof), MPa 230
700 to 790

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
750
Melting Completion (Liquidus), °C 930
1440
Melting Onset (Solidus), °C 880
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 43
25
Thermal Expansion, µm/m-K 19
10

Otherwise Unclassified Properties

Base Metal Price, % relative 26
8.0
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.1
Embodied Energy, MJ/kg 44
29
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1260 to 1590
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
32 to 34
Strength to Weight: Bending, points 16
27 to 28
Thermal Diffusivity, mm2/s 13
6.7
Thermal Shock Resistance, points 16
33 to 35

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
81.8 to 87.3
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 1.0
Nickel (Ni), % 0
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 13.9 to 22
0
Residuals, % 0 to 0.5
0