MakeItFrom.com
Menu (ESC)

C69700 Brass vs. AISI 431 Stainless Steel

C69700 brass belongs to the copper alloys classification, while AISI 431 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C69700 brass and the bottom bar is AISI 431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
15 to 17
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 300
550 to 840
Tensile Strength: Ultimate (UTS), MPa 470
890 to 1380
Tensile Strength: Yield (Proof), MPa 230
710 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
850
Melting Completion (Liquidus), °C 930
1510
Melting Onset (Solidus), °C 880
1450
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 43
26
Thermal Expansion, µm/m-K 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.0
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 44
31
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1270 to 2770
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
32 to 50
Strength to Weight: Bending, points 16
27 to 36
Thermal Diffusivity, mm2/s 13
7.0
Thermal Shock Resistance, points 16
28 to 43

Alloy Composition

Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
78.2 to 83.8
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 1.0
Nickel (Ni), % 0
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 13.9 to 22
0
Residuals, % 0 to 0.5
0