MakeItFrom.com
Menu (ESC)

C69700 Brass vs. Nickel 625

C69700 brass belongs to the copper alloys classification, while nickel 625 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69700 brass and the bottom bar is nickel 625.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
33 to 34
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
79
Shear Strength, MPa 300
530 to 600
Tensile Strength: Ultimate (UTS), MPa 470
790 to 910
Tensile Strength: Yield (Proof), MPa 230
320 to 450

Thermal Properties

Latent Heat of Fusion, J/g 240
330
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 930
1350
Melting Onset (Solidus), °C 880
1290
Specific Heat Capacity, J/kg-K 400
440
Thermal Conductivity, W/m-K 43
11
Thermal Expansion, µm/m-K 19
13

Otherwise Unclassified Properties

Base Metal Price, % relative 26
80
Density, g/cm3 8.3
8.6
Embodied Carbon, kg CO2/kg material 2.7
14
Embodied Energy, MJ/kg 44
190
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
220 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 250
260 to 490
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 16
26 to 29
Strength to Weight: Bending, points 16
22 to 24
Thermal Diffusivity, mm2/s 13
2.9
Thermal Shock Resistance, points 16
22 to 25

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
0 to 5.0
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 2.5 to 3.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 13.9 to 22
0
Residuals, % 0 to 0.5
0