MakeItFrom.com
Menu (ESC)

C69700 Brass vs. SAE-AISI 5160 Steel

C69700 brass belongs to the copper alloys classification, while SAE-AISI 5160 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69700 brass and the bottom bar is SAE-AISI 5160 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
12 to 18
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 300
390 to 700
Tensile Strength: Ultimate (UTS), MPa 470
660 to 1150
Tensile Strength: Yield (Proof), MPa 230
280 to 1010

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 160
420
Melting Completion (Liquidus), °C 930
1450
Melting Onset (Solidus), °C 880
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 43
43
Thermal Expansion, µm/m-K 19
13

Otherwise Unclassified Properties

Base Metal Price, % relative 26
2.1
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 44
19
Embodied Water, L/kg 310
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
73 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 250
200 to 2700
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
23 to 41
Strength to Weight: Bending, points 16
22 to 31
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 16
19 to 34

Alloy Composition

Carbon (C), % 0
0.56 to 0.61
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
97.1 to 97.8
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0.75 to 1.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 2.5 to 3.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 13.9 to 22
0
Residuals, % 0 to 0.5
0