MakeItFrom.com
Menu (ESC)

C69700 Brass vs. C68300 Brass

Both C69700 brass and C68300 brass are copper alloys. They have 80% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C69700 brass and the bottom bar is C68300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 25
15
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 41
40
Shear Strength, MPa 300
260
Tensile Strength: Ultimate (UTS), MPa 470
430
Tensile Strength: Yield (Proof), MPa 230
260

Thermal Properties

Latent Heat of Fusion, J/g 240
180
Maximum Temperature: Mechanical, °C 160
120
Melting Completion (Liquidus), °C 930
900
Melting Onset (Solidus), °C 880
890
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 43
120
Thermal Expansion, µm/m-K 19
20

Otherwise Unclassified Properties

Base Metal Price, % relative 26
23
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 44
46
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
56
Resilience: Unit (Modulus of Resilience), kJ/m3 250
330
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 16
15
Strength to Weight: Bending, points 16
16
Thermal Diffusivity, mm2/s 13
38
Thermal Shock Resistance, points 16
14

Alloy Composition

Antimony (Sb), % 0
0.3 to 1.0
Cadmium (Cd), % 0
0 to 0.010
Copper (Cu), % 75 to 80
59 to 63
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0.5 to 1.5
0 to 0.090
Manganese (Mn), % 0 to 0.4
0
Silicon (Si), % 2.5 to 3.5
0.3 to 1.0
Tin (Sn), % 0
0.050 to 0.2
Zinc (Zn), % 13.9 to 22
34.2 to 40.4
Residuals, % 0
0 to 0.5