MakeItFrom.com
Menu (ESC)

C69710 Brass vs. AISI 201L Stainless Steel

C69710 brass belongs to the copper alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
22 to 46
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 300
520 to 660
Tensile Strength: Ultimate (UTS), MPa 470
740 to 1040
Tensile Strength: Yield (Proof), MPa 230
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
880
Melting Completion (Liquidus), °C 930
1410
Melting Onset (Solidus), °C 880
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
12
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 44
38
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 250
220 to 1570
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
27 to 37
Strength to Weight: Bending, points 16
24 to 30
Thermal Diffusivity, mm2/s 12
4.0
Thermal Shock Resistance, points 16
16 to 23

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
67.9 to 75
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 2.5 to 3.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0