MakeItFrom.com
Menu (ESC)

C69710 Brass vs. ASTM A356 Grade 2

C69710 brass belongs to the copper alloys classification, while ASTM A356 grade 2 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is ASTM A356 grade 2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
25
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 470
510
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 160
410
Melting Completion (Liquidus), °C 930
1470
Melting Onset (Solidus), °C 880
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
51
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
2.4
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 44
20
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
190
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 12
14
Thermal Shock Resistance, points 16
15

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.25
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
97.7 to 99.55
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 0.7
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 2.5 to 3.5
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0