MakeItFrom.com
Menu (ESC)

C69710 Brass vs. ASTM A372 Grade M Steel

C69710 brass belongs to the copper alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
18 to 21
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 300
510 to 570
Tensile Strength: Ultimate (UTS), MPa 470
810 to 910
Tensile Strength: Yield (Proof), MPa 230
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 160
450
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
46
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 26
5.0
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 44
27
Embodied Water, L/kg 310
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
160
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1140 to 1580
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
29 to 32
Strength to Weight: Bending, points 16
24 to 27
Thermal Diffusivity, mm2/s 12
12
Thermal Shock Resistance, points 16
24 to 27

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
92.5 to 95.1
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
2.8 to 3.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 2.5 to 3.5
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0