MakeItFrom.com
Menu (ESC)

C69710 Brass vs. EN 1.4122 Stainless Steel

C69710 brass belongs to the copper alloys classification, while EN 1.4122 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is EN 1.4122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
14
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 300
480 to 520
Tensile Strength: Ultimate (UTS), MPa 470
790 to 850
Tensile Strength: Yield (Proof), MPa 230
450 to 630

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
870
Melting Completion (Liquidus), °C 930
1440
Melting Onset (Solidus), °C 880
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 44
33
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
93 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
520 to 1000
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
28 to 31
Strength to Weight: Bending, points 16
25 to 26
Thermal Diffusivity, mm2/s 12
4.0
Thermal Shock Resistance, points 16
28 to 30

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0.33 to 0.45
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
77.2 to 83.4
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.3
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0