MakeItFrom.com
Menu (ESC)

C69710 Brass vs. EN 1.4415 Stainless Steel

C69710 brass belongs to the copper alloys classification, while EN 1.4415 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is EN 1.4415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
17 to 20
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 300
520 to 570
Tensile Strength: Ultimate (UTS), MPa 470
830 to 930
Tensile Strength: Yield (Proof), MPa 230
730 to 840

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
790
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
19
Thermal Expansion, µm/m-K 19
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 26
13
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 44
51
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1350 to 1790
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
29 to 33
Strength to Weight: Bending, points 16
25 to 27
Thermal Diffusivity, mm2/s 12
5.1
Thermal Shock Resistance, points 16
30 to 34

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
75.9 to 82.4
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 0.5
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0
4.5 to 6.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0