MakeItFrom.com
Menu (ESC)

C69710 Brass vs. Grade 20 Titanium

C69710 brass belongs to the copper alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 25
5.7 to 17
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 41
47
Shear Strength, MPa 300
560 to 740
Tensile Strength: Ultimate (UTS), MPa 470
900 to 1270
Tensile Strength: Yield (Proof), MPa 230
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 240
400
Maximum Temperature: Mechanical, °C 160
370
Melting Completion (Liquidus), °C 930
1660
Melting Onset (Solidus), °C 880
1600
Specific Heat Capacity, J/kg-K 400
520
Thermal Expansion, µm/m-K 19
9.6

Otherwise Unclassified Properties

Density, g/cm3 8.3
5.0
Embodied Carbon, kg CO2/kg material 2.7
52
Embodied Energy, MJ/kg 44
860
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 250
2940 to 5760
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
33
Strength to Weight: Axial, points 16
50 to 70
Strength to Weight: Bending, points 16
41 to 52
Thermal Shock Resistance, points 16
55 to 77

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
5.5 to 6.5
Copper (Cu), % 75 to 80
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0 to 0.2
0 to 0.3
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 2.5 to 3.5
0
Titanium (Ti), % 0
71 to 77
Vanadium (V), % 0
7.5 to 8.5
Zinc (Zn), % 13.8 to 22
0
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4