MakeItFrom.com
Menu (ESC)

C69710 Brass vs. Grade 28 Titanium

C69710 brass belongs to the copper alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
11 to 17
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 41
40
Shear Strength, MPa 300
420 to 590
Tensile Strength: Ultimate (UTS), MPa 470
690 to 980
Tensile Strength: Yield (Proof), MPa 230
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 160
330
Melting Completion (Liquidus), °C 930
1640
Melting Onset (Solidus), °C 880
1590
Specific Heat Capacity, J/kg-K 400
550
Thermal Conductivity, W/m-K 40
8.3
Thermal Expansion, µm/m-K 19
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
36
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 2.7
37
Embodied Energy, MJ/kg 44
600
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1370 to 3100
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 16
43 to 61
Strength to Weight: Bending, points 16
39 to 49
Thermal Diffusivity, mm2/s 12
3.4
Thermal Shock Resistance, points 16
47 to 66

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 75 to 80
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 2.5 to 3.5
0
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0
0 to 0.4