MakeItFrom.com
Menu (ESC)

C69710 Brass vs. Nickel 686

C69710 brass belongs to the copper alloys classification, while nickel 686 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 25
51
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
77
Shear Strength, MPa 300
560
Tensile Strength: Ultimate (UTS), MPa 470
780
Tensile Strength: Yield (Proof), MPa 230
350

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 930
1380
Melting Onset (Solidus), °C 880
1340
Specific Heat Capacity, J/kg-K 400
420
Thermal Conductivity, W/m-K 40
9.8
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
70
Density, g/cm3 8.3
9.0
Embodied Carbon, kg CO2/kg material 2.7
12
Embodied Energy, MJ/kg 44
170
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
320
Resilience: Unit (Modulus of Resilience), kJ/m3 250
280
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 12
2.6
Thermal Shock Resistance, points 16
21

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
0 to 5.0
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
49.5 to 63
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0