MakeItFrom.com
Menu (ESC)

C69710 Brass vs. SAE-AISI 4028 Steel

C69710 brass belongs to the copper alloys classification, while SAE-AISI 4028 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is SAE-AISI 4028 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
14 to 23
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 300
310 to 380
Tensile Strength: Ultimate (UTS), MPa 470
490 to 630
Tensile Strength: Yield (Proof), MPa 230
260 to 520

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
49
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 26
2.1
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 44
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
81 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 250
180 to 720
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
17 to 22
Strength to Weight: Bending, points 16
18 to 21
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 16
16 to 20

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0.25 to 0.3
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
98.1 to 98.7
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0.7 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 2.5 to 3.5
0.15 to 0.35
Sulfur (S), % 0
0.035 to 0.050
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0