MakeItFrom.com
Menu (ESC)

C69710 Brass vs. SAE-AISI 4320 Steel

C69710 brass belongs to the copper alloys classification, while SAE-AISI 4320 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is SAE-AISI 4320 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
21 to 29
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 300
370 to 500
Tensile Strength: Ultimate (UTS), MPa 470
570 to 790
Tensile Strength: Yield (Proof), MPa 230
430 to 460

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 160
420
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
46
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
3.4
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 44
22
Embodied Water, L/kg 310
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 250
480 to 560
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
20 to 28
Strength to Weight: Bending, points 16
19 to 24
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 16
19 to 27

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0.17 to 0.22
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
95.8 to 97
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0.45 to 0.65
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 2.5 to 3.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0