MakeItFrom.com
Menu (ESC)

C69710 Brass vs. C14510 Copper

Both C69710 brass and C14510 copper are copper alloys. They have 78% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is C14510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 25
9.1 to 9.6
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
43
Shear Strength, MPa 300
180 to 190
Tensile Strength: Ultimate (UTS), MPa 470
300 to 320
Tensile Strength: Yield (Proof), MPa 230
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 240
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 930
1080
Melting Onset (Solidus), °C 880
1050
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 40
360
Thermal Expansion, µm/m-K 19
17

Otherwise Unclassified Properties

Base Metal Price, % relative 26
33
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 44
42
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
25 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 250
230 to 280
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16
9.2 to 10
Strength to Weight: Bending, points 16
11 to 12
Thermal Diffusivity, mm2/s 12
100
Thermal Shock Resistance, points 16
11 to 12

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Copper (Cu), % 75 to 80
99.15 to 99.69
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0.5 to 1.5
0 to 0.050
Manganese (Mn), % 0 to 0.4
0
Phosphorus (P), % 0
0.010 to 0.030
Silicon (Si), % 2.5 to 3.5
0
Tellurium (Te), % 0
0.3 to 0.7
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0