MakeItFrom.com
Menu (ESC)

C69710 Brass vs. S20432 Stainless Steel

C69710 brass belongs to the copper alloys classification, while S20432 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is S20432 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
45
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 300
400
Tensile Strength: Ultimate (UTS), MPa 470
580
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 930
1410
Melting Onset (Solidus), °C 880
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 26
13
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
38
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
210
Resilience: Unit (Modulus of Resilience), kJ/m3 250
140
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
21
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 12
4.0
Thermal Shock Resistance, points 16
13

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 75 to 80
2.0 to 3.0
Iron (Fe), % 0 to 0.2
66.7 to 74
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
3.0 to 5.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0