MakeItFrom.com
Menu (ESC)

C69710 Brass vs. S31100 Stainless Steel

C69710 brass belongs to the copper alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
4.5
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
79
Shear Strength, MPa 300
580
Tensile Strength: Ultimate (UTS), MPa 470
1000
Tensile Strength: Yield (Proof), MPa 230
710

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 930
1420
Melting Onset (Solidus), °C 880
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
16
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
16
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 44
44
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
40
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1240
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
36
Strength to Weight: Bending, points 16
29
Thermal Diffusivity, mm2/s 12
4.2
Thermal Shock Resistance, points 16
28

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
63.6 to 69
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 1.0
Nickel (Ni), % 0
6.0 to 7.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0