MakeItFrom.com
Menu (ESC)

C69710 Brass vs. S42300 Stainless Steel

C69710 brass belongs to the copper alloys classification, while S42300 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
9.1
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 300
650
Tensile Strength: Ultimate (UTS), MPa 470
1100
Tensile Strength: Yield (Proof), MPa 230
850

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 160
750
Melting Completion (Liquidus), °C 930
1470
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 44
44
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
93
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1840
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
39
Strength to Weight: Bending, points 16
30
Thermal Diffusivity, mm2/s 12
6.8
Thermal Shock Resistance, points 16
40

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0.27 to 0.32
Chromium (Cr), % 0
11 to 12
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
82 to 85.1
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
1.0 to 1.4
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 2.5 to 3.5
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0