MakeItFrom.com
Menu (ESC)

C69710 Brass vs. S44626 Stainless Steel

C69710 brass belongs to the copper alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
23
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
80
Shear Strength, MPa 300
340
Tensile Strength: Ultimate (UTS), MPa 470
540
Tensile Strength: Yield (Proof), MPa 230
350

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 930
1440
Melting Onset (Solidus), °C 880
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
17
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
14
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 44
42
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
300
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 16
19
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 12
4.6
Thermal Shock Resistance, points 16
18

Alloy Composition

Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 75 to 80
0 to 0.2
Iron (Fe), % 0 to 0.2
68.1 to 74.1
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0