MakeItFrom.com
Menu (ESC)

C70250 Copper vs. Grade 32 Titanium

C70250 copper belongs to the copper alloys classification, while grade 32 titanium belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C70250 copper and the bottom bar is grade 32 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
40
Tensile Strength: Ultimate (UTS), MPa 520 to 740
770

Thermal Properties

Latent Heat of Fusion, J/g 220
410
Maximum Temperature: Mechanical, °C 210
310
Melting Completion (Liquidus), °C 1100
1610
Melting Onset (Solidus), °C 1080
1560
Specific Heat Capacity, J/kg-K 390
550
Thermal Conductivity, W/m-K 170
7.5
Thermal Expansion, µm/m-K 17
8.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36 to 50
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 37 to 51
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
38
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 2.9
32
Embodied Energy, MJ/kg 45
530
Embodied Water, L/kg 310
180

Common Calculations

Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 16 to 23
47
Strength to Weight: Bending, points 16 to 21
41
Thermal Diffusivity, mm2/s 49
3.0
Thermal Shock Resistance, points 18 to 26
63

Alloy Composition

Aluminum (Al), % 0
4.5 to 5.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 92.7 to 97.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.050 to 0.3
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
0.6 to 1.2
Nickel (Ni), % 2.2 to 4.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.11
Silicon (Si), % 0.25 to 1.2
0.060 to 0.14
Tin (Sn), % 0
0.6 to 1.4
Titanium (Ti), % 0
88.1 to 93
Vanadium (V), % 0
0.6 to 1.4
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0
0.6 to 1.4
Residuals, % 0
0 to 0.4