MakeItFrom.com
Menu (ESC)

C70250 Copper vs. C14180 Copper

Both C70250 copper and C14180 copper are copper alloys. They have a very high 95% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C70250 copper and the bottom bar is C14180 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
43
Tensile Strength: Ultimate (UTS), MPa 520 to 740
210

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 210
200
Melting Completion (Liquidus), °C 1100
1080
Melting Onset (Solidus), °C 1080
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 170
370
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 8.9
9.0
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 45
41
Embodied Water, L/kg 310
310

Common Calculations

Stiffness to Weight: Axial, points 7.4
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 16 to 23
6.5
Strength to Weight: Bending, points 16 to 21
8.8
Thermal Diffusivity, mm2/s 49
110
Thermal Shock Resistance, points 18 to 26
7.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Copper (Cu), % 92.7 to 97.5
99.9 to 100
Lead (Pb), % 0 to 0.050
0 to 0.020
Magnesium (Mg), % 0.050 to 0.3
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 2.2 to 4.2
0
Phosphorus (P), % 0
0 to 0.075
Silicon (Si), % 0.25 to 1.2
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0