MakeItFrom.com
Menu (ESC)

C70260 Copper vs. 3005 Aluminum

C70260 copper belongs to the copper alloys classification, while 3005 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C70260 copper and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 9.5 to 19
1.1 to 16
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 320 to 450
84 to 150
Tensile Strength: Ultimate (UTS), MPa 520 to 760
140 to 270
Tensile Strength: Yield (Proof), MPa 410 to 650
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 220
400
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1060
660
Melting Onset (Solidus), °C 1040
640
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 160
160
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
42
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
140

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
2.8
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
18 to 390
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
49
Strength to Weight: Axial, points 16 to 24
14 to 27
Strength to Weight: Bending, points 16 to 21
21 to 33
Thermal Diffusivity, mm2/s 45
64
Thermal Shock Resistance, points 18 to 27
6.0 to 12

Alloy Composition

Aluminum (Al), % 0
95.7 to 98.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 95.8 to 98.8
0 to 0.3
Iron (Fe), % 0
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0
1.0 to 1.5
Nickel (Ni), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.2 to 0.7
0 to 0.6
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15