MakeItFrom.com
Menu (ESC)

C70260 Copper vs. 7075 Aluminum

C70260 copper belongs to the copper alloys classification, while 7075 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C70260 copper and the bottom bar is 7075 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 9.5 to 19
1.8 to 12
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
26
Shear Strength, MPa 320 to 450
150 to 340
Tensile Strength: Ultimate (UTS), MPa 520 to 760
240 to 590
Tensile Strength: Yield (Proof), MPa 410 to 650
120 to 510

Thermal Properties

Latent Heat of Fusion, J/g 220
380
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1060
640
Melting Onset (Solidus), °C 1040
480
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
33
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
98

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 310
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
7.8 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
110 to 1870
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 16 to 24
22 to 54
Strength to Weight: Bending, points 16 to 21
28 to 52
Thermal Diffusivity, mm2/s 45
50
Thermal Shock Resistance, points 18 to 27
10 to 25

Alloy Composition

Aluminum (Al), % 0
86.9 to 91.4
Chromium (Cr), % 0
0.18 to 0.28
Copper (Cu), % 95.8 to 98.8
1.2 to 2.0
Iron (Fe), % 0
0 to 0.5
Magnesium (Mg), % 0
2.1 to 2.9
Manganese (Mn), % 0
0 to 0.3
Nickel (Ni), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.2 to 0.7
0 to 0.4
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
5.1 to 6.1
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15