MakeItFrom.com
Menu (ESC)

C70260 Copper vs. AWS ER110S-1

C70260 copper belongs to the copper alloys classification, while AWS ER110S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is AWS ER110S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 9.5 to 19
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 520 to 760
870
Tensile Strength: Yield (Proof), MPa 410 to 650
740

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 160
47
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 43
25
Embodied Water, L/kg 310
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
140
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
1460
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 16 to 24
31
Strength to Weight: Bending, points 16 to 21
26
Thermal Diffusivity, mm2/s 45
13
Thermal Shock Resistance, points 18 to 27
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
0 to 0.5
Copper (Cu), % 95.8 to 98.8
0 to 0.25
Iron (Fe), % 0
92.8 to 96.3
Manganese (Mn), % 0
1.4 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 1.0 to 3.0
1.9 to 2.6
Phosphorus (P), % 0 to 0.010
0 to 0.010
Silicon (Si), % 0.2 to 0.7
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.040
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5