MakeItFrom.com
Menu (ESC)

C70260 Copper vs. C355.0 Aluminum

C70260 copper belongs to the copper alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C70260 copper and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 9.5 to 19
2.7 to 3.8
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Tensile Strength: Ultimate (UTS), MPa 520 to 760
290 to 310
Tensile Strength: Yield (Proof), MPa 410 to 650
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 220
470
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1060
620
Melting Onset (Solidus), °C 1040
570
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 160
150
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
39
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
130

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 310
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
290 to 380
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 16 to 24
30 to 32
Strength to Weight: Bending, points 16 to 21
36 to 37
Thermal Diffusivity, mm2/s 45
60
Thermal Shock Resistance, points 18 to 27
13 to 14

Alloy Composition

Aluminum (Al), % 0
91.7 to 94.1
Copper (Cu), % 95.8 to 98.8
1.0 to 1.5
Iron (Fe), % 0
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.2 to 0.7
4.5 to 5.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15