MakeItFrom.com
Menu (ESC)

C70260 Copper vs. EN 1.0303 Steel

C70260 copper belongs to the copper alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 9.5 to 19
12 to 25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 320 to 450
220 to 260
Tensile Strength: Ultimate (UTS), MPa 520 to 760
290 to 410
Tensile Strength: Yield (Proof), MPa 410 to 650
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1060
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 160
53
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 43
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
110 to 270
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 16 to 24
10 to 15
Strength to Weight: Bending, points 16 to 21
12 to 16
Thermal Diffusivity, mm2/s 45
14
Thermal Shock Resistance, points 18 to 27
9.2 to 13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0.020 to 0.060
Copper (Cu), % 95.8 to 98.8
0
Iron (Fe), % 0
99.335 to 99.71
Manganese (Mn), % 0
0.25 to 0.4
Nickel (Ni), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 0.2 to 0.7
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0