MakeItFrom.com
Menu (ESC)

C70260 Copper vs. EN 1.4825 Stainless Steel

C70260 copper belongs to the copper alloys classification, while EN 1.4825 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is EN 1.4825 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.5 to 19
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 520 to 760
510
Tensile Strength: Yield (Proof), MPa 410 to 650
260

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 200
900
Melting Completion (Liquidus), °C 1060
1410
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
15
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 43
43
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
72
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
170
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 16 to 24
18
Strength to Weight: Bending, points 16 to 21
18
Thermal Diffusivity, mm2/s 45
4.0
Thermal Shock Resistance, points 18 to 27
12

Alloy Composition

Carbon (C), % 0
0.15 to 0.35
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 95.8 to 98.8
0
Iron (Fe), % 0
65.6 to 74.4
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 1.0 to 3.0
8.0 to 10
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.2 to 0.7
0.5 to 2.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0