MakeItFrom.com
Menu (ESC)

C70260 Copper vs. EN 2.4668 Nickel

C70260 copper belongs to the copper alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 9.5 to 19
14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
75
Shear Strength, MPa 320 to 450
840
Tensile Strength: Ultimate (UTS), MPa 520 to 760
1390
Tensile Strength: Yield (Proof), MPa 410 to 650
1160

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
75
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.7
13
Embodied Energy, MJ/kg 43
190
Embodied Water, L/kg 310
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
180
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
3490
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 16 to 24
46
Strength to Weight: Bending, points 16 to 21
33
Thermal Diffusivity, mm2/s 45
3.5
Thermal Shock Resistance, points 18 to 27
40

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 95.8 to 98.8
0 to 0.3
Iron (Fe), % 0
11.2 to 24.6
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 1.0 to 3.0
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0 to 0.010
0 to 0.015
Silicon (Si), % 0.2 to 0.7
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.6 to 1.2
Residuals, % 0 to 0.5
0