MakeItFrom.com
Menu (ESC)

C70260 Copper vs. CC493K Bronze

Both C70260 copper and CC493K bronze are copper alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is CC493K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 9.5 to 19
14
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
39
Tensile Strength: Ultimate (UTS), MPa 520 to 760
270
Tensile Strength: Yield (Proof), MPa 410 to 650
140

Thermal Properties

Latent Heat of Fusion, J/g 220
180
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1060
960
Melting Onset (Solidus), °C 1040
880
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 160
61
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
12
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
32
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 43
53
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
33
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
89
Stiffness to Weight: Axial, points 7.3
6.5
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 16 to 24
8.6
Strength to Weight: Bending, points 16 to 21
11
Thermal Diffusivity, mm2/s 45
19
Thermal Shock Resistance, points 18 to 27
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Copper (Cu), % 95.8 to 98.8
79 to 86
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
5.0 to 8.0
Nickel (Ni), % 1.0 to 3.0
0 to 2.0
Phosphorus (P), % 0 to 0.010
0 to 0.1
Silicon (Si), % 0.2 to 0.7
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
5.2 to 8.0
Zinc (Zn), % 0
2.0 to 5.0
Residuals, % 0 to 0.5
0