MakeItFrom.com
Menu (ESC)

C70260 Copper vs. CC753S Brass

Both C70260 copper and CC753S brass are copper alloys. They have 60% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is CC753S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 9.5 to 19
17
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
40
Tensile Strength: Ultimate (UTS), MPa 520 to 760
340
Tensile Strength: Yield (Proof), MPa 410 to 650
170

Thermal Properties

Latent Heat of Fusion, J/g 220
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1060
820
Melting Onset (Solidus), °C 1040
780
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 160
99
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
26
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
29

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
47
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
140
Stiffness to Weight: Axial, points 7.3
7.1
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 16 to 24
12
Strength to Weight: Bending, points 16 to 21
13
Thermal Diffusivity, mm2/s 45
32
Thermal Shock Resistance, points 18 to 27
11

Alloy Composition

Aluminum (Al), % 0
0.4 to 0.8
Antimony (Sb), % 0
0 to 0.050
Copper (Cu), % 95.8 to 98.8
56.8 to 60.5
Iron (Fe), % 0
0.5 to 0.8
Lead (Pb), % 0
1.8 to 2.5
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 1.0 to 3.0
0.5 to 1.2
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 0.2 to 0.7
0 to 0.050
Tin (Sn), % 0
0 to 0.8
Zinc (Zn), % 0
33.1 to 40
Residuals, % 0 to 0.5
0